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We address the now classical problem of a diffusion process that crosses over from a ballistic behavior at
short times to a fractional diffusion �subdiffusion or superdiffusion� at longer times. Using the standard
non-Markovian diffusion equation we demonstrate how to choose the memory kernel to exactly respect the two
different asymptotics of the diffusion process. Having done so we solve for the probability distribution function
�pdf� as a continuous function which evolves inside a ballistically expanding domain. This general solution
agrees for long times with the pdf obtained within the continuous random-walk approach, but it is much
superior to this solution at shorter times where the effect of the ballistic regime is crucial.
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I. INTRODUCTION

Since the classical work of Hurst �1� on the stochastic
discharge of reservoirs and rivers, nature has offered us a
large number of examples of diffusion processes which are
“anomalous” in the sense that an observable X diffuses in
time such that its variance grows according to

��X2��t� � D�t� for t � tc, �1�

where ��1, angular brackets mean an average over repeated
experiments and D� is a coefficient with the appropriate di-
mensionality. This long-time behavior with ��1 is generic
when the diffusion steps are correlated, with persistence for
��1 and antipersistence for ��1 �2�. The list of systems
displaying such behavior is extensive and growing. Some
subdiffusive examples: charge-carrier transport in amorphous
semiconductors �3�, NMR diffusiometry in percolative �4�
and porous systems �5�, reptation dynamics in polymeric sys-
tems �6�, transport on fractal geometries �7�, diffusion of
scalar tracer in convection �8�, etc. Superdiffusive examples
include special domains of rotating flow �9�, collective slip
diffusion on solid surfaces �10�, Richardson turbulent diffu-
sion �11�, bulk-surface exchange controlled dynamics in po-
rous glasses �12�, quantum optics �13�, etc. This multitude of
examples created an urgent need to formulate novel stochas-
tic theories to compute the probability distribution function
�pdf� that is associated with anomalous diffusive processes of
this type �14�. However, all these past approaches considered
only the long-time behavior Eq. �1� and disregarded the im-
portant fact that in many cases the short-time behavior is
different, being

��X2��t� � D2t2 for t � tc. �2�

This short-time behavior is known as “ballistic” and is ge-
neric for a wide class of processes. In this Rapid Communi-
cation we show how to find the pdf of a process that satisfies
Eqs. �1� and �2� simultaneously in the asymptotic limits. The
presence of Eq. �2� at short times influences the solution in a
fundamental way that cannot be neglected.

The correlations between stochastic steps mean that the
diffusion process is not Markovian but rather has memory.
Thus the pdf of the observable X, f�X , t� is expected to sat-
isfy a diffusion equation with memory �15�,

� f�X,t�
�t

= �
0

t

dt�K�t − t���2f�X,t� , �3�

with K�t� being the memory kernel and �2 as the Laplace
operator. In this Rapid Communication we study the class of
processes which satisfy Eqs. �2� and �3� with ��2.

First of all we find an expression for the kernel K�t� which
is unique for a given law of mean-square displacement. Sec-
ond we consider the kernel which contains both ballistic con-
tribution Eq. �2� and long-time behavior �1�. For this case we
find an exact equation and a solution for Eq. �3�. Lastly a
simple interpolation formula for the kernel is inserted to the
exact equation which is then solved for the pdf of X without
any need for the fractional dynamics approach �14�. Some
interesting characteristics of the solution are described be-
low.

II. DETERMINATION OF THE KERNEL K(t)

To determine the kernel in Eq. �3� we use a result ob-
tained in �16�. Consider the auxiliary equation

�P�X,t�
�t

= �2P�X,t� . �4�

Define the Laplace transform of the solution of Eq. �4� as

P̃�X,s� 	 �
0

t

dte−stP�X,t� , �5�

it was shown in �16� that the solution of Eq. �3� with the
same initial conditions can be written as

f̃�X,s� =
1

K̃�s�
P̃
X,

s

K̃�s�
� , �6�

where here and below the tilde above the symbol means the
Laplace transform. The development that we propose here is

to replace in Eq. �6� the Laplace transform K̃�s� with the
Laplace transform of the mean-square displacement. This is
done by first realizing �by computing the variance and inte-
grating by parts� that
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��X2��t�
�t

= 2�
0

t

dt�K�t − t�� , �7�

or, equivalently,

K̃�s� =
s2�X2�˜�s�

2
=

��X2��t�
2 � t

+
s

2

��X2�˜�t�
�t

−
��X2��t�

2 � t
. �8�

The second line was written in order to find the time repre-
sentation of K�t� which is the inverse Laplace transform,

K�t� =
1

2

��t�

�

�t
�X2��t� +

�2

�t2 �X2��t�� =
1

2

�

�t

H�t�

��X2��t�
�t

� ,

�9�

where H�t� is the Heaviside function. Obviously, using the
first line of Eq. �8� in Eq. �6� the solution is entirely deter-
mined by whatever law is given for the variance, together
with initial conditions.

For ordinary diffusion the variance is defined by Eq. �1�
with �=1 and tc=0. It follows from Eq. �9� that the kernel is
K�t����t� and Eq. �3� is reduced to Markovian Eq. �4�; this
process does not possess any memory. More complicated
examples are considered below.

III. EXAMPLE I: FRACTIONAL DIFFERENTIAL
EQUATIONS

In recent literature the problem of a diffusion process
which is consistent with Eq. �1� only for all times �i.e., tc
=0� is investigated using the formalism of fractional differ-
ential equations �see, e.g., �14��. In this formalism Eq. �3� is
replaced by the fractional equation

� f�X,t�
�t

= D� 0Dt
1−��2f�X,t�

�x2 , �10�

where the Rieman-Liouville operator 0Dt
1−� is defined by

0Dt
1−� 	�x,t� =

1


���
�

�t
�

0

t

dt�
	�x,t��

�t − t��1−� , �11�

where 
��� is the gamma function. It is easy to see that this
equation follows from Eq. �3� with the kernel evaluated by
Eq. �9� with variance �1�. We reiterate however that this
equation is consistent with Eq. �1� for all times t�0. This of
course is a problem since this formalism cannot agree with
the ballistic short-time behavior which is generic in many
systems.

IV. EXAMPLE II: BALLISTIC BEHAVIOR

For X one dimensional the solution of Eq. �4� with the
initial condition P�X , t=0�=��X� is given by

P̃�X,s� =
1

2�s
exp�− X�s� . �12�

Substituting in Eq. �6� we find that

f̃�X,s� =
1

�2s3�X2�˜�s�
exp
− X� 2

s�X2�˜�s�
� . �13�

For systems with the pure ballistic behavior �e.g., dilute gas�
the variance can be written as �X2�t= �u2�t2, where �u2� is the
mean-square average of the particle velocities. The Laplace

transform of this expression is given by �X2�˜�s�=2�u2� /s3

and the Laplace transform of the pdf is defined by

f̃�X,s� =
1

2��u2�
exp
− X

s
��u2�

� . �14�

The inverse transform reads as

f�X,t� =
1

2
��X − ��u2�t� . �15�

This solution corresponds to a deterministic evolution; there
is a complete memory of the initial conditions in the absence
of interparticle interactions, K�t�= �u2�.

V. GENERAL CASE

In the general case the mean-square displacement satisfied
some law �X2��t� which is supposed to be known at all times,
with possible asymptotic behavior as shown in Eqs. �1� and
�2��. To find the appropriate general solution we will split

f̃�X ,s� into two parts, f̃ I�X ,s� and f̃ II�X ,s�, such that the first
part is constructed to agree with the existence of a ballistic
regime. Suppose that in that regime, at short time, the mean-
square displacement can be expanded in a Taylor series

�X2��t� = �
i=0

�

ait
i−1 = a0t2 + a1t3 + a2t4 + ¯ , �16�

where 0=3, 1=4, etc. Then the Laplace transform �X2�˜�s�
can be written for s→� as �17�

�X2�˜�s� = �
i=0

�

ai
�i�
1

si
= 2a0

1

s3 + 6a1
1

s4 + 24a2
1

s5 + ¯ .

�17�

Substituting Eq. �17� up to O�s−4� in Eq. �13� yields

f̃ I�X,s�s→� =
1

2�a0

exp�−
X
�a0


s −
3a1

2a0
�� . �18�

The inverse Laplace transform of this result reads as

f I�X,t� =
1

2
exp
3a1

2a0
t���X − �a0t� . �19�

Not surprisingly, this partial solution corresponds to a deter-
ministic propagation. Note that in order to avoid exponential
divergence in time we must have a1�0 in expansion �16�.

Having found f̃ I�X ,s� we can now write f̃ II�X ,s� simply as

f̃ II�X,s� = f̃�X,s� − f̃ I�X,s� . �20�

Calculating this difference explicitly we find
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f̃ II�X,s� =
1

2�� 2

s3�X2�˜�s�
�exp�− X�� 2

s�X2�˜�s�

−
s

�a0
�� −

1
�a0

exp� 3a1

2a0
3/2�X��exp
−

X
�a0

s�
	 F̃�X,s�exp
−

X
�a0

s� . �21�

The inverse Laplace transform of Eq. �21� is given by

f II�X,t� = F�X,t − X/�a0�H��a0t − X� . �22�

The importance of this result is that the explicit Heaviside
function is taking upon itself the discontinuity in the solution
f II�X , t�. The exact value of the function F�X , t− X /�a0� at
the point X=�a0t can be calculated using the initial value
theorem and is given by

F�X,0� = − �3

4

a1

a0
3/2 +

1

2�a0
�27

8 
a1

a0
�2

− 6
a2

a0
�t�

�exp
−
3

2

a1

a0
t� . �23�

Summing together results �19� and �22� in the time do-
main we get a general solution of the non-Markovian prob-
lem with a short-time ballistic behavior in the form

f�X,t� =
1

2
exp
3a1

2a0
t���X − �a0t�

+ F
X,t −
X
�a0

�H��a0t − X� . �24�

This is the main result of the present Rapid Communication.
The diffusion repartition of the probability distribution func-
tion occurs inside the spatial diffusion domain which in-
creases in a deterministic way. The first term in Eq. �24�
corresponds to the propagating � function which is inherited

from the initial conditions, and it lives at the edge of the
ballistically expanding domain. Schematically the time evo-
lution of this term is shown in Fig. 1, where the � function is
graphically represented as a narrow Gaussian. The dashed
line represents the exponential decay of the integral over the
� function. The function F�X , t− X

�a0
� in the time domain is a

continuous function and can be evaluated numerically, for
example using the direct integration method �18�. Below we
demonstrate this calculation with explicit examples.
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FIG. 1. �Color online� The time evolution of the function f I�X , t�
defined by Eq. �19� for time intervals t / t0=0.5, 1, 2, 4, and 8 �the
time scale t0=a0 / �3a1��. The � function is graphically represented
by narrow Gaussians.
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FIG. 2. �Color online� The continuous part of the pdf �Eq. �22��
for different values of the parameter �. Superdiffusion ��=3 /2,
upper panel�, regular diffusion ��=1, middle panel� and subdiffu-
sion ��=1 /2, lower panel�. Time intervals from the top to the bot-
tom �=0.5, 1, 2, 4, and 8. The reader should note that the full
solution of the problem is the sum of the two solutions shown in
this and the previous figure.
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VI. INTERPOLATION FOR ALL TIMES

To interpolate Eqs. �1� and �2� we propose the form

��X2�t = 2D�t0
� �t/t0�2

�1 + �t/t0��2−� , �25�

where 0���2. Here t0 is the crossover characteristic time,
at t� t0 law �25� describes the ballistic regime and at t� t0
the fractional diffusion.

Introduce now dimensionless variables ��2��

= ��X2�t / �2D�t0
�� and �= t / t0. With these variables the last

equation reads as

��2�� =
�2

�1 + ��2−� . �26�

The Taylor expansion of Eq. �25� is given by

��2�� = �2 − �2 − ���3 +
1

2
�3 − ���2 − ���4 + ¯ . �27�

Substituting these expansion coefficients into Eq. �19� yields
the first term in the expression for probability distribution
function �24�,

f I�x,t� =
1

2
exp
−

3�2 − ��
2

����� − �� . �28�

The Laplace transform of Eq. �26� is

�X2�˜�s� = 
�

s
− 1�1

s
+ ��� − 1�
�

s
− 2� + s� es

s�
�� − 1,s� ,

�29�

where 
�a ,s� is the incomplete gamma function. Note that
the case �=2 is special, since it annuls the exponent in Eq.
�28�, leaving as a solution a ballistically propagating
�-function. For all other values of ��2 the inverse Laplace

transform of the function F̃�x ,s� which defines the diffusion

process inside the expanded spatial domain should be evalu-
ated, in general, numerically.

Results of the calculations following the method of Ref.
�18� for the smooth part of the probability distribution func-
tion f II�x , t� for different values of the parameter � are shown
in Fig. 2. The reader should appreciate the tremendous role
of memory. For example, regular diffusion with �=1 results
in a Gaussian pdf that is peacefully expanding and flattening
as time increases. Here, in the mid panel of Fig. 2 we see that
the ballistic part which is represented by the advancing and
reducing � function sends backward the probability that it
loses due to the exponential decay seen in Fig. 1. This “back
diffusion” leads initially to a qualitatively different looking
pdf, with a maximum at the edge of the ballistically expand-
ing domain. At later times the pdf begins to resemble more
regular diffusion. The effect strongly depends on � simply
due to the appearance of � in the exponent in Eq. �28�.

For long times the contribution from f I�X , t� to the general
solution tends to zero and the solutions shown in Fig. 2 agree
with the Markovian pdf obtained in the frame of a
continuous-time random walk �19�. For the special case �

=0 Eq. �29� reads as �X2�˜�s�=1 /s+ �1− �2+s�esE1�s��, where
E1�s� is the exponential integral, and the limiting behavior of
the general solution from Eq. �24� f�X , t�t�X/�a0

�F�X , t�
can be evaluated analytically with the help of the final value
theorem f�X�= 1

�2
exp�−�2X�; this result coincides with the

pdf from �19� at the same conditions.
In summary, we have shown how to deal with diffusion

processes that crossover from a ballistic to a fractional be-
havior for short and long times respectively, within the time
nonlocal approach. General solution �24� demonstrates the
effect of the temporal memory in the form of a partition of
the probability distribution function inside a spatial domain
which increases in a deterministic way. The approach pro-
vides a solution that is valid at all times and, in particular, is
free from the instantaneous action puzzle.
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